首页> 外文OA文献 >Optical and structural study of the pressure-induced phase transition of $CdWO_{4}$
【2h】

Optical and structural study of the pressure-induced phase transition of $CdWO_{4}$

机译:$ CdWO_ {4} $的压力诱导相变的光学和结构研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The optical absorption of $CdWO_{4}$ is reported at high pressures up to 23 GPa. The onset of a phase transition was detected at 19.5 GPa, in good agreement with a previous Raman spectroscopy study. The crystal structure of the high-pressure phase of CdWO4 was solved at 22 GPa, employing single-crystal synchrotron x-ray diffraction. The symmetry changes from space group P2/c in the low-pressure wolframite phase to P2$_1$/c in the high-pressure postwolframite phase accompanied by a doubling of the unit-cell volume. The octahedral oxygen coordination of the tungsten and cadmium ions is increased to [7]-fold and [6+1]-fold, respectively, at the phase transition. The compressibility of the low-pressure phase of $CdWO_{4}$ has been reevaluated with powder x-ray diffraction up to 15 GPa, finding a bulk modulus of B$_0$=123 GPa. The direct band gap of the low-pressure phase increases with compression up to 16.9 GPa at 12 meV/GPa. At this point an indirect band gap crosses the direct band gap and decreases at −2 meV/GPa up to 19.5 GPa where the phase transition starts. At the phase transition the band gap collapses by 0.7 eV and another direct band gap decreases at –50 meV/GPa up to the maximum measured pressure. The structural stability of the postwolframite structure is confirmed by ab initio calculations, finding the postwolframite-type phase to be more stable than the wolframite at 18 GPa. Lattice dynamic calculations based on space group P2$_1$/c explain well the Raman-active modes previously measured in the high-pressure postwolframite phase. The pressure-induced band gap crossing in the wolframite phase as well as the pressure dependence of the direct band gap in the high-pressure phase are further discussed with respect to the calculations.
机译:据报道,在高达23 GPa的高压下,$ CdWO_ {4} $的光吸收。在19.5 GPa处检测到相变的发生,这与先前的拉曼光谱研究非常吻合。使用单晶同步加速器X射线衍射,在22 GPa下解析了CdWO4高压相的晶体结构。对称性从低压黑钨矿相的空间群P2 / c变为高压后钨铁矿相的空间群P2 $ _1 $ / c,伴随着晶胞体积的增加。在相变处,钨和镉离子的八面体氧配位分别增加到[7]倍和[6 + 1]倍。利用高达15 GPa的粉末X射线衍射对$ CdWO_ {4} $低压相的可压缩性进行了重新评估,发现其体积模量为B $ _0 $ = 123 GPa。低压相的直接带隙随着压缩在12 meV / GPa时高达16.9 GPa而增加。在这一点上,间接带隙穿过直接带隙,并以-2 meV / GPa减小,直到相变开始的19.5 GPa。在相变过程中,带隙塌陷了0.7 eV,另一个直接带隙在–50 meV / GPa处减小,直至最大测量压力。通过从头算计算确定了硅灰石后结构的结构稳定性,发现在18 GPa下,硅灰石型相比黑钨矿更稳定。基于空间群P2 $ _1 $ / c的晶格动力学计算很好地解释了先前在高压硅灰石相中测得的拉曼活性模式。关于计算,进一步讨论了黑钨矿相中的压力引起的带隙穿越以及高压相中的直接带隙的压力依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号